Multi-Channel CNN Based Inner-Attention for Compound Sentence Relation Classification
نویسندگان
چکیده
منابع مشابه
Multi-channel Sentence Classification for Spo
In traditional language modeling word prediction is based on the local context (e.g. n-gram). In spoken dialog, language statistics are affected by the multidimensional structure of the human-machine interaction. In this paper we investigate the statistical dependencies of users’ responses with respect to the system’s and user’s channel. The system channel components are the prompts’ text, dial...
متن کاملRelation Classification: CNN or RNN?
Convolutional neural networks (CNN) have delivered competitive performance on relation classification, without tedious feature engineering. A particular shortcoming of CNN, however, is that it is less powerful in modeling longspan relations. This paper presents a model based on recurrent neural networks (RNN) and compares the capabilities of CNN and RNN on the relation classification task. We c...
متن کاملMulti-channel sentence classification for spoken dialogue language modeling
In traditional language modeling word prediction is based on the local context (e.g. n-gram). In spoken dialog, language statistics are affected by the multidimensional structure of the human-machine interaction. In this paper we investigate the statistical dependencies of users’ responses with respect to the system’s and user’s channel. The system channel components are the prompts’ text, dial...
متن کاملRelation Classification via Multi-Level Attention CNNs
Relation classification is a crucial ingredient in numerous information extraction systems seeking to mine structured facts from text. We propose a novel convolutional neural network architecture for this task, relying on two levels of attention in order to better discern patterns in heterogeneous contexts. This architecture enables endto-end learning from task-specific labeled data, forgoing t...
متن کاملMulti-Channel CNN-based Object Detection for Enhanced Situation Awareness
Object Detection is critical for automatic military operations. However, the performance of current object detection algorithms is deficient in terms of the requirements in military scenarios. This is mainly because the object presence is hard to detect due to the indistinguishable appearance and dramatic changes of object’s size which is determined by the distance to the detection sensors. Rec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2019
ISSN: 2169-3536
DOI: 10.1109/access.2019.2943545